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ABSTRACT

The object of the work is a scaling form for thermodynamic properties of HFC

134a along the coexisting curve (CC). The experimental Ps,T - data and densities on CC

ρl and ρg were selected in the region from triple point to critical one. Data [1,2] gave a

new Ps,T - information in a wide temperature interval including the triple point pressure.

There are new ρl,ρg,T - data in [1,2,3] including results in the vicinity of the critical

point  The new data gives an opportunity to build equations for the mentioned

properties.

Extended scaling equations were chosen for the correlation of measured values.

The temperature dependence of the order parameter and the CC diameter were analyzed.

A routine for determination of the expressions was elaborated. A system of Ps (T), ρl(T)

and ρg(T) equations is proposed for joint calculation of P, ρ,T - data along CC. The

equations represent reliable experimental points in a region from 300 K up to the critical

temperature. Ps (T) is useful down to the triple point. The equations can be helpful to

correct the standard tables [4] on CC in a low temperature region and in a vicinity of the

critical point.

KEY WORDS: HFC 134a; R134a; thermodynamic properties; scaling equation,

saturation pressure; coexisting curve.
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1. INTRODUCTION

The experimental Ps,T - data and values of densities ρl and ρg cover a wide region

of temperatures. An attention was paid to the data array including results [1,2,3] which

were devoted to experimental studies in the vicinities  of the critical and triple points.

The new data let us to review the vapor pressure equations and the equations for the

densities of saturated liquid and saturated vapour  received earlier [4,5,6].

We tested several models for Ps (T), ρl(T) and ρg(T) which had a form of a

temperature expansion. They were built in different regions ∆Tw from a low working

level Tw up to the critical temperature Tc (∆Tw=Tc-Tw). The length of ∆Tw was equal 74,

134 and 200 K. A relative RMS deviations in liquid and gas phases as a criterion of an

approximation were calculated for the input. massive of selected measured points. The

validity of models depends strongly on a value of the interval ∆Tw. The models

consisted of two up to six terms were analyzed. The results of approximation with small

RMS deviations was got when we used scaling model with three terms and ∆Tw was

equal to 20...50 K. In the cases when the scaling part was add by analytical terms the

combined models were useful in ∆Tw>50 K.

Scaling expressions include such parameters as critical exponents. We dealt with

two methods of determination of the exponens for an approximation of input data. First

method connected with Ising critical exponents. These values are determined

theoretically. Some times there are a disadvantage of using this method to CC properties

of one component liquids p [12,13]. The second way is helpful when the asymptotic

region is within the experimentally attainable temperature interval. It gives an
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opportunity to determine effective critical exponents during the fitting experimental

input data. We try to find out advantages of the second way

2. THE SATURATION PRESSURE

According to the extended nonanalitical theory of critical phenomena an

expression of Ps (T) was chosen in the next form

 ln(Ps/Pc) = Bp0 (1 - 1/t) + Bp1τ + Bp2τ 2-α + Bp3τ 2-α+∆ + B43τ 3 + Bp5 τ 5,          (2.1)

where t=T/Tc, τ=1 - t, are the critical exponents, Tc and Pc the critical temperature

and pressure, (Bpi) - adjustable coefficients

(Bpi) coefficients are to be determine under a statistical fitting. An approximation

criterions are connected with deviations of experimental data from equation (2.1)

expressed in the form

δPi = 100 (Pexp i - Pi)/ P i ,            Sp = (ΣδPi
2 / N) 0.5   ,                                                         (2.2)

where Pexp i  - an experimental value of P in i- point, P i - a calculated value of P in

i- point, Sp - a relative RMS deviation, N number of points of the start input massive or j

- group devoted to a source.

The input massive consisted of selected experimental points including data [1,2,7-

10]. The number of points was equal to 89, they covered ∆Tw=200 K. It is important to

underline that the data [1,2] have given the first experimental value of the pressure

Ptr=(420 ±10) Pa in the triple point at T = 169.86 K. The quality of the input massive is

concluded in the fact that deviation of data near the triple point lay in the limit ± 4% and

the same characteristic near the critical point equals to ± 0.2%. A relative RMS

deviation for every j-group of points Sexp
pi was determined using the value

recommended in j - source (some times it is the accuracy of the experiment) ore a local
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approximation equation. The work with the massive of Ps,T - data showed that an

approximation with criterion Sp < 0.05% delivered (Spj) which are close to (Sexp
pj). This

level of the criterion Sp was to be reached during the treaty.

A method of determination of (Bpi) coefficients was elaborated. It is needed on the

firs step 1) to fix the value of zero coefficient Bp0,Tc,Pc, α and ∆, 2) to calculate the

other (Bpi) by a liner MSQ treaty of input points, 3) to calculate the criterions Sp and

RMS deviation for every j-group of points Spi. The second step of the routine depends

on the results of the previous step. If analysis shows that criterion Sp are low enough and

(Spj) correlate with (Sexp
p) then routine is stopped. On opposite conditions a new fixed

parameters are to chosen and the second step is to start. Using several steps the method

leaded to an optimal decision.

During the study of the form (2.1) we estimated that the value of Sp depended on

Pc and Bp0 sufficiently. An influence of Tc on RMS Sp was modern. A small influence of

α on RMS Sp was found. The Pc influence of ∆ was smaller.

It is known that Kiselev [13] has used Ising values for the exponents α =0.1085

and ∆ = 0.5 to calculate Ps(T). These values were taken on the first step of our treaty.

During the treaty when we selected fixed parameters the next interval of values

was studied Pc = (4.056 ± 0.05) MPa and Tc = (374.16 ± 0.08) K.

The optimum combination of the parameters of (2.2) are presented in Table 1.

The value of Pc determined is rather close to the average critical pressure (4.059 ±

0.009) MPa that can be found in [4]. The value of Tc is close to the average figure

(374.18 ± 0.07) K that can be found in [4]. Tc is lower than the standard value 374.21 K

[4]. The critical exponents α was higher than Ising model value 0.1085. The correction
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exponent ∆ was taken due to Ising model. The equation given in [11] is one of the

seldom scaling expressions for HFC 134a. The parameters of a crossover equation

accepted in [11] are the next - Pc = 4.065 MPa and Tc = 374.274 K. It is seen that these

values Pc and Tc are higher.

A comparison of the calculated saturation pressures data was done with directly

measured points obtained by Blanke [2,3], Goodwin and co-workers [9], Magee and co-

workers [10], Baehr and Tillner-Roth [8] and Weber [7]. with combined scaling

pressure equation (2.1) in the range 240 K...Tc. A comparison was fulfilled with the

international standard data obtained by Tillner-Roth and Baehr [4] and with calculated

data obtained by Kiselev [11] using the program CREOS 97. The calculated saturation

pressures coincide with data [11] in the limits 0.05% in the temperature interval

372...374.1 K.

A distribution of relative deviations are shown in Fig. 1,2. There are relative

deviations δPi  for some groups of data in ∆Tw = 240 K in Fig. 1. The data [4] are

represented here. In fig. 2 there are δPi of data devoted to a low level of temperatures

from 240 K down to the triple point temperature. Deviations of the standard data [4] are

placed here. The deviation of the triple point pressure obtained by Blanke [3] is placed

here.

RMS deviations (Spj) for the groups are corresponded to (Sexp
pj) or are close the

accuracy of the experiments. It appears that the data [1,2] are useful to correct the

standard tables [4] in the low temperature region. The calculated value of Ptr is equal

412 Pa that is in a good agreement with the accuracy (±10 Pa) of the experiment [1] and

higher than the value 390 Pa [4].

3. THE DENSITIES OF THE SATURATED LIQUID AND VAPOUR
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According to the extended nonanalitical theory of critical phenomena [13] the order

parameter fs and the diameter of CC fd  can be expressed in some temperature interval by

expansions

fs=(ρl - ρg)(2ρc)
-1=Bs0τ β + Bs1τ β+∆ + Bs2τ β+2∆,                                                                          (3.1)

fd=(ρl + ρg)(2ρc)
-1 - 1= + Bd0τ 1-α

+ Bd2τ 1-α+∆ + Bd0τ 1-α+2∆,                               (3.2)

where ρc, α, β and ∆ denote the critical density and the critical exponents, (Bsi) and

(Bdi) - amplitudes.

The amplitudes (Bsi) and (Bdi) are to be determine under a statistical fitting.

It is known one way to determine the exponents α, β and ∆ from a theoretical

model as it done in [11,13]. In the case there are taken as β=0.325, α =0.1085 and ∆ =

0.5. The second method considers the exponents α and β as adjustable parameters. The

value of α and β have to be determine in a procedure of experimental data

approximation. The same way is applied for calculation of amplitudes (Bsi) and (Bdi), ρc

and Tc. Interesting results have been got in [12,13] where the authors used the second

method in a wide temperature region - ∆Tw=100..300 K. During the investigation we

tested these two methods for an approximation of HFC134a points. An analysis of the

results has shown that the model (3.1,3.2) with effective values of parameters can be

adequate to experimental data in ∆Tw=74 K if there are three terms in the expansions

(3.1,3.2). The expressions (3.1,3.2) with three terms are named hear as Model 1 of

extended scaling laws.

One more model was checked with the aim to express experimental data in ∆Tw >

74 K. Two extra analytical terms τ2 and τ3 were added in (3.1,3.2) and the rescieved

expressions were named combined equations - Model 2
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fs=(ρl-ρg)(2ρc)
-1=Bs0τβ+ Bs1τ β+∆ + Bs2τ β+2∆+Bs3τ2+Bs4τ3 ,                                       (3.3)

fd=(ρl-ρg)(2ρc)
-1-1=Bd0τ1-α

+Bd1τ1-α+∆+Bd2τ1-α+2∆+Bd3τ 2+ Bd4τ 3.                  (3.4)

With the help of known Models 1 and 2 numerical values of densities on CC can be

determine by the expressions

ρl=(fd–fs+1)ρc,ρg = (fd + fs+1) ρc .                                                             (3.5)

The amplitudes (Bsi) and (Bdi) are to be determine under a statistical fitting. An

approximation criterions used are connected with deviations of experimental data.

Relative individual and RMS deviations of experimental points from equations

(3.1,3.2,3.3,3.4) were calculated for the start massive (S) and every j-group of points (Sj)

δρgi = 100 (ρg exp i – ρgi)/ ρgi ,          Sg = (Σδρgi
2 / N) 0.5  ,

         δρei = 100 (ρl exp i – ρli)/ ρei ,               Se = (Σδρli
2 / N) 0.5,

where δρgi,δρei - relative deviations of the vapour and liquid densities in i - point,

ρg exp i and ρl exp i - experimental values of the densities in i - point, ρgi and ρli calculated

values of the vapour and liquid densities in i - point, N - number of points taken in to a

consideration - number of points of the input massive or j-group, Sg, Se - relative RMS

deviations of the vapour and liquid densities.

The input massive (ρl,ρg,T) consisted of selected experimental points including

data [1,2,3, 7,14 - 17]. The number of points was equal to 153, they covered ∆Tw=134

K. It is important to remark that the data [3] gives the experimental value in the interval 

∆Tw=2 K where a big scattering of points gives some problems. A relative RMS

deviation for every j-group of points Sexp
ρ j was determined using the value

recommended in j - source (some times it is the accuracy of the experiment) ore a local

approximation equation. The quality of the input massive is the next: scattering of
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points of the liquid and the same in the vapour are differ; RMS deviation Se ≅ 0.1% and

RMS deviation Sg ≅ 0.5%. The problem of approximation is to fined a compromise

between two criterions. The work with the massive of (ρl,ρg,T) - data showed that an

approximation with criterion Se ≅ 0.1% and Sg ≅ 0.5%. delivered (Sρ j) which are close to

(Sexp
ρ j). This level of the criterions Se and Sg was to be reached during the treaty.

The fixed parameters as ρc, Tc,α,β and ∆ of Model 1,2 can be taken from literature

sources or determine previously. The other free parameters - amplitudes (Bsi) and (Bdi)

are to be determine under a treatment. It is an usual schema [14]. A method of

determination of parameters of the equations (3.1,3.2,3.3,3.4) was produced. As in the

case of Ps (T) treaty the firs step was to fix the values of leading amplitudes Bso,Bdo in

addition to ρc,Tc,α,β and ∆. The other (Bsi,Bdi) were to be calculated by the liner MSQ

treaty of input points. The criterions Se and Sg and deviations for groups (Sρ j) were to be

determine. The second step of the routine depends on the results of the previous step. If

analysis showed that criterion Se and Sg were low enough and (Sρ j) correlated with

(Sexp
ρj) then routine was stopped. On opposite site a new fixed parameters were to be

chosen and the second step was to start. Using several steps the method leaded to an

optimal decision.

An elaborated statistic routine gave a possibility by changing step by step the

leading amplitudes Bso,Bdo to fined Model 1 with the next properties: 1) expansions (3.1,

3,2) with two terms fit adequately the points in ∆Tw=10 K, 2) expansions (3.1, 3.2) with

three terms fit adequately the points in ∆Tw=74 K. A model with these properties

corresponds to a theoretical statement that the second term in (3.3,3.4) is to play a roleof

the firs correction term and the second term is to play a role of the third correction one.
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When using the routine for Model 2 it is possible to get just the same properties of

the equations: 1) expansions (3.5, 3.6) with two terms fit adequately the points in ∆Tw ≅

10 K, 2) expansions (3.5, 3.6) with three terms fit adequately the points in ∆Tw=74 K..

The form of Models 1, 2 satisfied to the criterion let us say that Model 2 include

coefficients of Model 1 as a scaling kernel. The extra terms play a role of correction

members in ∆Tw > 74 K.

On every step of the routine the scaling function ψ l, j is investigated. It has the

form

ψ l,j = (ρl,g - ρg)(ρcτ β )-1 = ±Bs0 + Bd0τ 1 - α - β  ± Bs1τ ∆ - β + ... .               (3.8)

Due to (3.8) the next criteria can be estimated: in some region ∆Tw there is ψ l,j

that is to be linear and symmetrical to the amplitude Bs0. The form of the scaling

function is an important criteria of an optimal decision for Models 1,2.

When we build Model 2 the amplitudes of Model 1 are determine automatically.

For a detailed analyses of the decision some additional characteristics are calculated in

different ∆Tw: 1) for Model 1 - Se and Sg in ∆Tw=74 K, Spe and Spg in ∆Tw=134 K, 2) for

Model 2 - Spe and Sg in ∆Tw=74 K, Se. In the case when the characteristics of the Models

coincide it is possible to conclude that Model 2 include coefficients of Model 1 as a

scaling kernel.

Selecting parameters for (3.3-3.6) we accepted values which reported Yata [3]: ρc

= 511 kg/m3, Tc = 374.107 K and β = 0.348. These figures were chosen as fixed

parameters in the firs step of the routine. A sequence of steps let us determine numerical

ingredients for Model 2 which are placed in Table 2.
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The value of ρc determined is rather close to the value ρc = (511 ± 3) kg/m3

reported in [1,18]. ρc is lower than ρc = 511.95 kg/m3  recommended in [4]. ρc is lower

than ρc = 505.0 kg/m3  used in [11].

The value of Tc = 374.107 K is a little lower than the average data (374.18 ± 0.07)

K and Tc = 374.16 K that was determine during our Ps(T) determination.

The determined value of β = 0.349 is rather close to the start value [1] and to the

results [12,13] related to other substances and to the date [14] related to HFC134a. It is

higher than Ising value β=0.325.

The next values of the criterions of the approximation were found: 1) for Model 1

- Se = 0.15% and Sg = 0.37% in ∆Tw=74 K; 2) for Model 2 - Se = 0.14% and Sg = 0.38%

in ∆Tw=74 K; Se = 0.13%  and Sg = 0.71% in ∆Tw=134 K. The criterions confirm that the

characteristics of Model 1 coincide with those of Model 2 in ∆Tw=74. It is possible to

conclude that Model 2 include coefficients of Model 1 as a scaling kernel. The

compromise found between two criterions is quite acceptable. RMS deviations (Sρ j) for

the groups are corresponded to (Sexp
ρ j) or close the accuracy of the measured data.

An analysis of the scaling function showed that its form suits satisfactorily to a

theoretical prediction.

A comparison of calculated densities on the coexisting curve was done with

directly measured points obtained by Yata [1], Fakushima and co-workers [15] Kabata

and co-workers [14], Weber [7], Niesen [17], Blanke [2,3] with combined scaling

density equation (3.3,3.4). A comparison was fulfilled with the international standard

data obtained by Tillner-Roth and Baehr [4] and with calculated data obtained by

Kiselev [11] using the program CREOS 97. RMS deviations Sρ j for the group [4] are
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equal to 0.076% in the liquid and 0.27% in the vapour in the interval 240...372 K. There

are higher deviations in ∆Tw=2.1 K. Calculated data [11] are lower δρl = -0.5.. - 1.5 % in

the liquid and higher δρg = 1... 1.5 % in the vapour in ∆Tw=2 K

A distribution of relative deviations are shown in Fig. 3,4 in ∆Tw = 74 K. There

are relative deviations δρgi  for some groups of experimental data for the saturated liquid

in Fig. 3. The data [4] are represented hear too. In fig. 3 there are δρg of the data in the

vapour. Deviations of the points [4] are placed her too.

The combined equations Ps (T), ρl(T) and ρg(T) discussed higher were got

independently from each other. A priory it is impossible to predict what kind of

adjustable parameter (α,Tc,ρc,...) will be optimal for one property, even more it is

impossible to estimate a priory the values of effective α and Tc which have to be used

jointly in the saturated pressure equation and in the CC density equations. We found out

the next compromise value of Tc = 374.13 K and α = 0.15 for a joint system of

combined scaling equations. The system is preferable if it is needed to calculate some

combination of properties which include Ps,T,ρl,ρg dPs/dT a. o. The critical parameters

and exponents, coefficients and amplitudes of equations included in the system were

determine with the help of the routines discussed higher. The characteristics are placed

in Table 3.

A comparison of the properties on CC calculated with the help of the joint system

was done with directly measured points obtained in the manner that expressed higher.

The approximation characteristics of the system are similar to those of the optimal

equations described higher. Some discrepancy in calculated properties takes place
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because of the difference in fixed parameters: the critical temperature, pressure and

exponent α.
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Table 1 Vapour pressure equation

Critical parameters and exponents

Pc /MPa Tc /K α ∆

4.056 374.16 0.13 0.5

Coefficients

Bp0 Bp1 Bp2 Bp3 Bp4 Bp5

1 -6.617472 4.832822 -23.136551 10.850666 -45.108741
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Table 2. Equations for densities on the coexisting curve

Critical parameters and exponents

ρc / kg/m3 Tc /K α β ∆

510.5 374.107 0.15 0.349 0.5

Amplitudes

Bs0 Bs1 Bs2 Bs3 Bs4

2.1086 1.070546 -0.728417 -0.080814 0.390958

Bd0 Bd1 Bd2  Bd3 Bd4

0.494 -0.067772 -0.351772 -0.081399 0.383732
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Table 3. The system of combined scaling equations

Critical parameters and exponents

Pc /MPa ρc / kg/m3 Tc /K α ∆

4.056 509.5 374.13 0.15 0.5

Coefficients of the vapour pressure equation

Bp0 Bp1 Bp2 Bp3 Bp4 Bp5

1 -6.657749 5.215287 -23.195393 10.622101 -45.208388

Amplitudes

Bs0 Bs1 Bs2 Bs3 Bs4

2.1541 0.494035 0.011263 0.056136 -0.297321

Bd0 Bd1 Bd2  Bd3 Bd4

0.612 -0.15665 -0.301785 -0.060392 0.349387
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FIGURE CUPTIONS

Fig. 1 Percentage deviations of the experimental saturation pressures obtained by

Tillner-Roth and Baehr [4], Blanke [2,3], Goodwin and co-workers[9] , Magee and co-

workers[10], Baehr and Tillner-Roth [8] and Weber [7] with combined scaling pressure

equation (2.1) in the range 240 K...Tc

Fig. 2 Percentage deviations of the experimental pressures obtained by Tillner-Roth and

Baehr [4], Blanke [2,3], Goodwin and co-workers [9] and Magee and co-workers [10]

with combined scaling equation (2.1) in the range Ttr... 240 K.

Fig. 3 Percentage deviations of the experimental densities of the vapour obtained by

Yata [1], Fakushima and co-workers [15], Tillner-Roth and Baehr [4], Kabata and co-

workers [14], Weber [7], Niesen [17], Blanke [2,3] with combined scaling density

equation (3.3,3.4) in the range 280 K ...Tc.

Fig. 4 Percentage deviations of the experimental densities of the liquid obtained by Yata

[1], Fakushima and co-workers [15], Tillner-Roth and Baehr [4], Kabata and co-workers

[14], Weber [7], Niesen [17], Blanke [2,3] with combined scaling density equation

(3.3,3.4) in the range 360 K ...Tc.
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Ustjuzhanin E.                   Fig. 2
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Ustjuzhanin E.                   Fig. 3
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Ustjuzhanin E.                   Fig. 4
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